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Equations of motion in cartesian coordinates:

We need a relationship between stresses (σij) and velocities (u, v and w)

The equations of motion include stresses (σij) and velocities (u, v and w)
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Stress-deformation relationships

Normal stresses:

Shearing stresses:

For Newtonian, incompressible fluids, stresses are linearly related to deformations



Eliminate stresses
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The right hand term of the equation becomes:
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Navier-Stokes equations (cartesian)
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Continuity equation
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Stress-deformation relationships

for an incompressible fluid (cylindrical)

Normal stresses:

Shearing stresses:



Navier-Stokes equations (cylindrical)
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r, θ and z momentum equations:



Simple solutions for viscous, incompressible fluids

1) Steady, laminar flow between infinite parallel plates

• Principal difficulty: nonlinearities from the convective acceleration terms.

• Exact solution exist only for few cases



Steady, laminar flow between infinite parallel plates (cont’d)

Boundary conditions:

u(h)=u(-h)=0



Steady, laminar flow between infinite parallel plates (cont’d)



Steady, laminar flow between infinite parallel plates (cont’d)



Steady, laminar flow between infinite parallel plates (cont’d)



Couette flow



Couette flow



Example on plane Couette flow



Example on plane Couette flow



Example on plane Couette flow



Example on plane Couette flow



Steady, laminar flow in a horizontal tube: (Hagen-Poiseuille)



Poiseuille’s law



Steady, axial, laminar flow in an annulus

Derive expressions for:

a) the axial velocity profile, u(r)

b) the flow rate, Q

Assuming developed flow, the x-momentum equation of the Navier-Stokes equations is given by:

Integrating twice we obtain

Applying the boundary conditions u(r=ri) = u(r=ro) = 0, we come up with the final expression for the velocity distribution:

The flow Q can then be derived by simple integration:



Example: flow around a rotating cylinder






