Viscous flow

Equations of motion in cartesian coordinates:
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The equations of motion include stresses (oj) and velocities (u, v and w)

We need arelationship between stresses (oij) and velocities (u, v and w)



Stress-deformation relationships

For Newtonian, incompressible fluids, stresses are linearly related to deformations
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Eliminate stresses
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Navier-Stokes equations (cartesian)
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Momentum equations

Continuity equation



Stress-deformation relationships
for an incompressible fluid (cylindrical)
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Navier-Stokes equations (cylindrical)

r, 0 and z momentum equations:
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Simple solutions for viscous, incompressible fluids

 Principal difficulty: nonlinearities from the convective acceleration terms.
» Exact solution exist only for few cases

1) Steady, laminar flow between infinite parallel plates
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Steady, laminar flow between infinite parallel plates (cont’d)
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Steady, laminar flow between infinite parallel plates (cont’d)
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Steady, laminar flow between infinite parallel plates (cont’d)
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Steady, laminar flow between infinite parallel plates (cont’d)
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Couette flow
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Example on plane Couette flow
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-+ Example on plane Couette flow
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-+ Example on plane Couette flow

T %yyﬂa‘f per 22772 W/A/ /e

l
\/W(x)a/x —-/‘A <& JA)( -/-1/)
.2

7Z¢ 4’}’6”4(76 V&Zﬁﬁ s

V= 7 _ v _ 4’4
A 3/¢_




e 1

Example on plane Couette flow
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Steady, laminar flow in a horizontal tube: (Hagen-Poiseulille)
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Poiseuille’s law
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Steady, axial, laminar flow in an annulus

Derive expressions for:
a) the axial velocity profile, u(r)
b) the flow rate, Q

o

Assuming developed flow, the x-momentum equation of the Navier-Stokes equations is given by:
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Applying the boundary conditions u(r=ri) = u(r=ro) = 0, we come up with the final expression for the velocity distribution:
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Example: flow around a rotating cylinder
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